By Alan Marconett

Last time, we discussed the mechanical aspects of Strider,

the “Creepy Hybrid” — a low-cost platform for exploring the
operation and construction of a legged robot. We've also got it
mostly assembled. This time, we'll discuss how to program the
microcontroller and the servo controller board.

For Starters

For our learning experience, we will compile our own
“stripped down” and modified version of the Lynxmotion
(LM) AH3-R Basic program that will run on the BB2 board
with an Atom Basic module installed. The Atom module
sends serial commands to the SSC32 servo driver board.
For our own fully commented Creepy Hybrid control
program, check the SERVO website for downloads
{www.servomagazine.com).

Creepy Code

Our BASIC program will only use the joysticks of the
wireless PS2 controller and few — if any — of the buttons
as it is just intended to get us started. We made an effort
to minimize the code length in order to simplify the
program. Feel free to expand it!

The basic (no pun intended) tasks of cur program can
be summarized:

44 scrvo 10.2009

- Read PS2 joystick {(or a COM port).

- Interpret the joystick data into a “motion vector”
(which way we want to go).

« Calculate K {Inverse Kinematics) for the leg moves.

- Move the legs.

Using some “canned” peripheral functions available in
Basic Micro's Atom Basic makRes it easy to read the PS2
interface from a joystick or a COM port. The shiffout and
shiftin commands you see first initialize the PS2 interface
for us (we want the joystick in analog mode) and then
allow us to read information from the joystick. We're
primarily interested in the data from the right joystick.
This joystick will allow us to control or drive the robot
forward or backward, and make left or right turns.

But you knew that!

To keep this program similar to the original LM code so
that you can also start understanding it, I’'m going to use
the same coordinate systems as the AH3-R Basic program
created by the free LM PowerPod utility. That is, X is

e o e

forward and backward, Z is left to right, and Y is up and
down. Confused yet? Don't worry, you really don't have
to understand any of the IK code in order to program
and run the robot. I'm also going to keep most of the
variable names, as well. After you are familiar with our
version of the code, you should have a good start on
understanding the full AH3-R code.

Orders Received!

The PS2 wireless joystick is our primary control
device for this robot (Creepy2ps2.BAS version). It's how
we receive our marching orders. The control program
running on the BB2 reads the PS2 and saves the data
into the PS2 variable array called DualShock. From here,
we get the XSpeed and YSpeed parameters, and then
calculate a vector angle (DAngle) and a distance
(DCoord) which are the companents of our motion or
"command” vector. When we detect a command that
we need to act on, we'll set a value in MovesDefay
which will allow us o take a few steps. We'll also watch

Alternate PIC boards.

for a few other buttons, such as the circle and triangle
buttons, and the left joystick. We have a height control
(left vertical joystick, LegUpShift) and a steering control
(left horizontal joystick, Steering). We will read the digital
joystick left and right buttons to control our gait speed
(GaitSpeedTmp). Oh yes, we can also sound a horn by
pressing the left joystick button!

Inverse Kinematics

It's relatively easy to do the FK (Forward Kinematics)
for a leg. That's just "I have the angles of the hip, thigh,
and knee joints, and the lengths of the tibia and femur.
How do | figure out where the foot will go?”

What's harder is figuring out how to set the servo
angles to move the foot where we want. That's where IK

The program to run Strider is available online at www.servo
magazine.com. Get the appropriate BAS control pragram (PS2 aor COM),
and then compile and download the file to the BB2 with the appropriate IDE
available from Basic Micro (www.basicmicro.com). | used the 5.3.1.3 Atom
IDE. Refer to the BB2 and Basic Atom documentation to accomplish this.

Builders will find it useful to download the Power Pod program from the
Lynxmotion website at www.lynxmotion.com, generate code for the CH3-R
Hexapod robot, and follow along in it for comparison. Many of the variables
mentioned here have been designed to be the same as in the CH3-R robot
code. When building the CH3-R program, several parameters you'll be

interested in are:

IDE: Basic Micro IDE V05.xx

Control: PS2

H3 Leg: 3FOFA

H3 Body: Round

PS2 Controller/BB2 connections: BB2 (pins 12, 13,
PS2 sticks dead zone: small

Tibia Angle: vertical

SSC32 on (pin 8)

14, and 15)

(Inverse Kinematics) comes in. It does the calculations of
“How do | move my leg joints to get the foot to this
position?” We'll do this with a little pythagorean theorem,
a sine and cosine calculation here and there, and the good
old cosine law. If you don't care for more high school trig,
feel free to skip to the next section.

We'll calculate a hip angle first. Qur current Xpos and
Zpos {foot distances from 0) for one leg are two sides of a
right triangle. The hypotenuse of this triangle is calculated
(Distance) and then we figure out the angle between them
using the Arc Cosine function. Atom Basic doesn’t have
an acos funciion, so the original program cleverly uses a
subroutine to do so using a look-up table. The result is
stored in HipH_Angle (horizontal).

Next, we're going to calculate the knee angle.
Remember “c*2 = a”2 + b"2 - 2ab
cos{C)" — the cosine law?

Think of the tibia as the “b” side of
the triangle and the femur as the “a"
side. We'll square the tibia length and
the femur lengths, and then subtract
the square of our previous triangle’s
hypotenuse. (Still with me?) We still need
a 2ab term, which is two times the femur
length times the tibia length. All we have
to do now is take the arc cosine of this
partial result, and we've got our knee
angle {Knee_Angle). Two calcs down,
one to go.

We'll use the cosine law again, only
this time we'll add two angles together:
one formed by the femur and tibia
(HipVertAngle), and one formed on the
ground (TempAngle). The result is the
vertical hip angle (HipV_Angfe). | won't
go through all that again; that'll be
left as an exercise for the reader!

SERVO 10.2009 45

The 3DOF leg.

Notice that | haven't mentioned some of the scaling
(the 127s) used by the program to work with Atom Basic
functions, nor the range limiting equations that use the
min and max functions to insure our calculated angles
are within the range of motion of the respective servos.
These limits and the lengths of the femur and tibia are
all specified as constants in the start of the program.
Change them if you change the leg component dimensions.

We'll do these calcs for both legs. Imagine all the calcs
that need to be done for a hexapod or an octapod!

Move Those Legs!

Now that we've got our three servo angles per leg,
we'll scale them into pulse ranges that our servos can
understand. We'll also use the min and max functions
again to insure that the calculated values won't send a
serve into the stops. (You wouldn't like that!) Some
min/max constant examples:

HipH_PulseMax - HipH_PulseMin
HipV_AngleMax - HipV_AngleMin

You'll also see three more variables: HipH_Pulse,
HipV_Pulse, and Knee_Pulse. You guessed it! These are
the pulse values we'll send io the servos later. For the
calculation of each of these three variables, we'll use

otherangle of the
3DOEF leg:

46 SERVO 10.2009

constants for the allowed range of the servos, such as
HipV_PulseMin and HipV_PulseMax, for example.

serout S55C32,i38400,
[“#7,FRHH,FRHH2, "P”,DEC HipH_Pulse(2)

With these values in hand, we'll send them to the
SSC-32 with the special Atom Basic command serout.
We send out a string of characters and values that the
SSC-32 interprets for us and continuously positions our
servos. Believe me, the SSC-32 saves a LOT of work
{calculations) getting our servos to their positions! We send
the servo # (character constants defined as RRHV,RRHV2
and others), a 'P' for a position command, and a decimal
value which is the position of the servo we just calculated. {
We do this for all six of our servos. Whew!

But Wait!

Before we can do those IK calculations and move the
legs, we need to back up a bit and figure out which leg
to lift and when. In the Tripod subroutines, we basically
alternate between the two legs — lifting one of them,
moving the lifted leg forward, and the "grounded” leg back
to take a step. The "Tripod” and “Steps” variables are used
to walk us through dividing up the gait into little steps to
make the moves smooth, and alternating which leg is up.

YPos (Index) = -Tibia_Length + Height
XPos (Index) = XPos(Index) + (XPos2(Index)
- (XPos(Index) - (HipV_HipH +

Femur_Length))) /StepFlag

ZPos (Index) = ZPos(Index) + (ZPos2{Index)
- ZPos (Index))/StepFlag

We've now updated the X, Y, and Z pasitions for the
feet by a little bit each time through the loop.

This entire gait action is controlled by a big loop; it
proceeds when we have a reason to move the legs
{(MovesDelay) and have finished the last move of the legs.
We can't very well issue new move commands to the legs
while the SSC-32 is still moving them from the previous
commands, now can we?

Did | Miss Anything?

There are some little subroutines that set up the trig
functions that | mentioned. | won't go over them here.
We have some initialization routines for the leg's starting
positions (H3Init and /nitPos), but that's about it. There
are also three LEDs that can optionally be wired in to allow
monitoring of the PS2 or COM activity (yellow), and the
two legs (red and green).

Alternate Code

A program very similar to the Atom Basic program can
be written and compiled by MBasic Pro from Basic Micro.

- —_—

Emmre—

This is a conventional compiler that can
generate executable code that will run on
a PIC chip installed in either of the previ-
ously mentioned PICkit 2 demo board or
SchmartBoard's “A PIC" board. The
advantage here is

that you can write code for any of several
different blank PICs and use them in a
PCB (printed circuit board) of your own
choosing. (Some of us like to make our
own boards!)

Besides the Atom Basic, there is :©
also the Atom Pro Basic, which is a much
faster processor with more functions. It
requires a slightly different Basic program
to run it (Creepy2p.BAS), which is also
available for download. The “Pro” IDE for

HipHorz
Angle

A Components of the
HipH-HipV 1K calculations.

FemurLength

Knee Servo

Y-Axis

/ HipVert Angle

2

Tibia
Length

Y-Axis

this module allows compiling C programs
that can be run on the Pro module.

/ Temp C

PC COMS

Oh yeah, you will have a different
routine to replace the PS2 interface if you

v \ TmpAngle

TmpCC

elect to use a COM part connected to a
PC instead.

On the PC end, you can use the PS2 simulation program
(Serial_CP_H3.exe) supplied with PowerPod to talk to

the bot. The COM version {Creepy2com.BAS) has the
appropriate serial interface code. In this case, the bot sends
the characters "Rd” to the PC to tell it when it is ready to
receive a new command. There is also the addition of a
checksum calc to insure the data is okay.

PC Direct to SSC-32

For a really simple implementation, it's also possible to
directly control the S5C-32 board from a Basic or C program
running on the PC via a trailing COM wire (or use Blue
Smirf). While | haven't actually done this yet, it looks like
an interesting possibility for those inclined. The same basic
calculations would be done, but this time on the PC
instead. The PC program would send the same servo
commands out over a serial port to the SSC-32. You'd be
on your own to work out a joystick.

More on the Creep Gait
and Steering

Actually, there are two ways to move a basically
rectangular robot forward. One can simply put half the
legs/wheels on one side of the robot on one “stick”
(control channel) and the other half of the legs/wheels on
the other side on the other stick. This is a basic tank drive
(also called skid-steer) which can still be seen in use today
in tracked vehicles. The operator controls the power/
braking applied to each track individually, and the balance
of the power or braking causes the vehicle to turn or go
straight. Many R/C controlled four wheel drive vehicles

work in this manner, although they've combined the two
sticks of the old caterpillar tractor into our modern joystick.
Our legs would simply move forward/backward at the
same speed, or slightly different speeds to make turns
(just like with tracks).

The other way {much more fun) for a legged robot
to move is to move each leg so that it gains ground in a
“vector” (angle and distance) relative to its chassis. The
robot is thus able to “translate” in any desired direction.
Translation is defined as “Motion of a body in which every
point of the body moves parallel to and the same distance
as every other point of the body.” That is a goed definition
of the motions my round hexapod robot is capable of. A
quadruped robot with splayed legs should also be capable
of this motion (I'll find out when | build a quadruped for
my next project).

Strider kneeling.

SERVO 10.2009 47

____—____-_—

Strider's bracket,
spacer, and wheel.

Strider won't be fully capable of this omni-directional
motion, as the two back wheels can't be moved under
command like the legs can. But Strider can do a pirouette,
much the same as a show horse, i.e., he can make a circle
with his two front legs around the two stationary wheels.
okay, the wheels actually rotate but the center of the axle
between the two wheels stays in place. So, what we have is
the two legs being capable of moving in any direction, with
the wheels basically just following.

Both models of steering can be simplified to a “bicycle”
model (front steerable and rear non-steerable wheels);
this method of steering only allows us to turn in circles of
about twice our length. The round hexapod (or octapod,
for that matter) could be considered a “unicycle” model,
and capable of rotating around its own center.

Warning!

Keep fingers clear of the legs when first powering
up. The servos can move very fast and can pinch! Legged

robots have also been known to “jump"” off of tables when
first powered on.

Power Up!

Assuming you've adjusted your legs using the
PowerPod utility as described earlier, you're ready to try
some initial moves. The control program powers up the legs
in steps to avoid damage. With only two legs, this is not
much of a chore, but should be observed carefully. If the
legs are assembled incorrectly or other than a left and right
pair (and on the proper sides), subsequent incorrect
motions may cause the legs to strike each other and
possibly cause damage. Be ready to remove servo power
should this happen. Careful setup with PowerPod should
reduce the likelihood of this. 3

Once powered up, you might try the “Circle” and
“Triangle” commands. After that, a gingerly tug on the
right joystick to take a step or two should cause the legs to
make a few gait cycles and reward your efforts. After that

48 servo 10.2009

— if all is well — a full-fledged walk on a kitchen or
hardwood floor is recommended. Deep pile rugs will
probably give Strider problems — he gets his feet caught!

Driving the Creepy Hybrid

To drive Strider like a car, pull back a little on the right
joystick and then use the left joystick Y-axis (left-right) to
steer. Or, you can translate (go in various directions without
steering) using just the right joystick. A push forward on
the joystick and Strider will back up.

Rotation controlled by the left joystick X-axis
(horizontal) is called steering. It's not really steering
because if you try to turn while both right joysticks are
centered, the robot will rotate in place (pirouette).

The left joystick's Y-axis (vertical) changes the robot’s
ride height.

The Triangle button lowers the front end (legs) to the
ground, then turns off all the servos; press the Triangle
button again to turn the servos back on and reset the
program to default settings.

The Circle button returns the robot to setup position
(all servos at 1,500 mS}) which is useful for checking
leg setup.

You can control the speed of walking via left and right -
keys on the D-Pad. Up and down on the D-Pad increases or
decreases the amount of leg lift.

The original AH3-R code running on a hexapod will, of
course, have many more moves. The chassis can be tilted
and rotated considerably, and some additional changes to
the gait can be made. There are even “FLY” and "ATTACK”
modes! Most of these moves are not possible with only two

Links to Resources

Legs, Servos, PS2, Battery, BB2, SSC-32, PowerPod
www.lynxmotion.com

Atom Basic, Atom Pro Basic, MBasic Pro Compiler
www.basicmicro.com

Bluetooth UBW
www.sparkfun.com/commerce/
categories.php?cPath=16_115

SchmartBoard jumpers, Eight-bit PIC Module A
www.schmartboard.com

Hi-Tech PICC-18 Compiler
www.htsoft.com

DM164120-3 PICkit 2 28-pin PIC Demo Board
www.microchipdirect.com

Microchip Datasheets, ICD 2, MPLAB
www.microchip.com

Parts, PICs
www.digikey.com

DT106 Development Board
www.dontronics-shop.com

Aluminum Stock
www.onlinemetals.com

o.6560

CAD drawing of the
Hexapod chassis plate.

| 000935

o
Lh=
o vl
padk: R
o
= =
o~ ~Of

WALK 13 for Hexapod
5/4/07 ALM

legs, but a lot has been learned, none the less!

Future Plans

The Creepy Hybrid can be thought of as an
“introductory legged robot.” With it, we've been able to

learn a little about how to use legs on a robot. Having a

little foresight, we started with either a quadruped or
hexapod chassis, knowing that we can add additional legs
later. As there is already code available for hexapods

All the CAD drawings, as well as the .BAS files are available for download at

www.servomagazine.com.

SOFTWARE Downlfoads:
Creepy2ps2.bas
Creepy2com.bas
Creepyp2.bas
Creepy2Mb.bas

Basic Atom 5.3 PS2 program

Basic Atom 5.3 COM (RS-232) control

Basic Atom Pro 8.0.1.8 P52 or RS-232 control
Mbasic Pro 5.2 program: PS2

Creepy Hybrid Parts List

(3 3DCF leg pair

(1 Hitec HS475 servos (six)

(1 Hitec serva horns {six)

(0 6V battery pack

[9V battery

O 9V battery connectar

[SPST toggle switches (one or two)

(1 6V battery connector

O Quadruped chassis plate pair

[Chassis spacer pair

[Leg bracket pair

[0 Battery bracket

[0 Wheel pair

[pS2 plate

[T PS2 wireless joystick

[Blue Smirf (alternate)

[J BB2 (Bot Board 2)

(3 28-pin PIC Dema hoard DS41301A
(Microchip) (alternate)

[Eight-bit A-PIC board (SchmartBoard)
(alternate)

[UBW Sparkfun (alternate)

] DT106 DonTronics (alternate)

[Basic Atom 28 module

[Basic Atom Pro 28 module (alternate)
O MBasic Pro from Basic Micro (alternate)
[SSC-32 Servo board

(11 SSC-12 (alternate)

HARDWARE

[6-32 hex aluminum spacers
(two or four)
[440 hex aluminum spacers (eight or 12)
[2-56 screws
(J 6-32 screws
0 4-40 screws
0 4-40 nuts
7 6' DBY serial cable M-F
(0 .025 jumpers 10

(AH3-R), this is a logical choice. For more of a challenge,
new code for a quadruped can be written.

I'd also like to explore 2DOF legs
on Strider. With fewer calcs to do
(four vs. six servas), maybe just a sin-
gle processor could run the entire bot!

Plus, with faster micros, it should
be possible to combine the bot control
and servo control program into a
single program, and run six or even
12 servos on one processor board.
Thus, a simpler (less expensive) bot
could be built. SV

