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ABSTRACT
Physically meaningful and easy-to-use analytical (mathematical) stress model is developed for a short
clamed-clamped beam with offset ends. The offset is assumed to be known in advance and is appreciably
smaller than the beam’s length (height) and even its thickness. The analysis is limited to elastic
deformations. While the classical Timoshenko short-beam theory seeks the beam’s deflection caused by the
combined bending and shear deformations for the given loading, an inverse problem is considered here: the
lateral force is sought for the given end displacement (offset). In short beams this force is larger than in
long beams, since, in order to achieve the given displacement, the applied force has to overcome both
bending and shear resistance of the beam.
It is envisioned that short beams could adequately mimic the state of stress in and the mechanical behavior
of solder joint interconnections, including ball-grid-array (BGA) systems, characterized by large, compared
to conventional joints, stand-off heights. When the package/printed-circuit-board (PCB) assembly is
subjected to the change in temperature, the effective thermal expansion (contraction) mismatch of the
package and the PCB materials results in the given (i.e., easily predictable) relative displacement (offset) of
the ends of the solder joint. This offset can be easily determined beforehand from the known external
thermal mismatch strain and the position of the joint with respect to the mid-cross-section of the assembly.
The maximum normal and shearing stresses could be viewed as suitable criteria of the beam’s (joint’s)
material reliability. It is shown that these stresses can be brought down considerably by employing beam-
like joints, i.e. joints with an increased stand-off height. It is imperative, of course, that, if such joints are
employed, there is still enough interfacial real estate considered, so that the BGA bonding strength is not
compromised. On the other hand, owing to the lower stress/strain level, assurance of the short and long-
term reliability of a BGA system with elevated stand-off heights of the solder joints might be much less of
a challenge than in the case of conventional joints. By employing beam-like solder joints one can even
manage to avoid inelastic deformations of the joints, thereby increasing dramatically their lifetime.
Future work will include, but might not be limited to, the finite-element computations, experimental
evaluations (such as, e.g., shear-off testing), and analyses of the occurrence and the role of the inelastic
strains.

INTRODUCTION

Ball-grid-array (BGA) (Fig.1) is a widely used IC packaging technology [1-4]. It enables one to
permanently surface mount electronic components on a printed circuit board (PCB) with high mounting
density (high pin count). In addition, the application of the BGA technology leads to a short signal delay.
The reliability of BGA solder joint interconnections is, however, a crucial bottleneck of the technology [5-
12], especially if lead-free solder materials are considered [13-35]. The maximum normal and shearing
stresses and strains often lead the BGA solder joints to fracture. These stresses could be viewed as suitable
preliminary design-for-reliability criteria of the beam’s material reliability.

One important disadvantage of the current BGA technology, as far as the induced stresses and long-term
reliability are concerned, is that the BGA solder balls are not mechanically compliant. They do not flex the
way the longer leads of the previous generations of the second level (package to PCB) interconnections
were and are unable therefore to effectively relieve stresses and strains in the joints. Accordingly, the
objective of this paper is to show that higher mechanical flexibility of solder joint interconnections can be
achieved by employing joints with large (compared to conventional joints) stand-off heights. It is
noteworthy in this connection that, as has been shown earlier [36] in application to Bell-Labs Si-on-Si flip-
chip multi-chip packaging technology (Fig.2), solder joints configured as "pancakes" (i.e. those with large
ratios of their diameter to the height) exhibit higher stresses and strains than joints configured as "balls" (i.e.
joints with lower aspect ratios).

To demonstrate and to quantify the effectiveness of joints configured as short beams, an analytical
(mathematical) stress model is developed. The possible length (height)-to-thickness ratio of the short beams



considered is always lower than ten and could be even as small as one, and therefore the effect of the shear
deformations has to be accounted for. As to the offset, it is assumed to be always small compared to the
beam’s length (height) and even to its thickness. The analysis is limited to the elastic deformations.
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Fig.1. Ball Grid Array (BGA) technology
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Fig.2. Thermal stresses and strains are higher for solder joint interconnections with higher ratio of their
diameter to the standoff height.

Unlike the classical Timoshenko beam theory [37-39], when the total deflections caused by the combined
bending and shear deformations are sought for the given loading, we consider an inverse problem: the
lateral force is sought for the given total displacement (end offset). In a short beam, because of its
deformation in shear, this force is expected to be larger than in a long beam, since such a shear force has to
overcome both the bending and the shear resistance of the beam to achieve the given end offset.



ANALYSIS

Consider a short beam of unit width, length (height), %, and thickness 2/. The beam’s ends are clamped

and are offset at the given distance A . The strain energy due to the beam’s bending can be found as (see,
e.g., [39])

1
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where EI is the beam’s flexural rigidity, £ is Young’s modulus of the material, [ = gl 3 is the

moment of inertia of the beam’s cross-section (per unit width), / is half the beam’s thickness, % is its
length (height),

M(z) = MO(I - %j @)
is the (linearly) distributed bending moment,
M, = % Nyh 3)

are the bending moments at the clamped ends, and &V, o 1s the lateral force (this force does not change along
the beam). The origin of the coordinate Z is at the beam’s lower end. The elastic curve V(z) of the beam

can be sought, in an approximate analysis, in the form of the method of initial parameters (see, e.g., [38]):
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The condition V(h) = A yields:
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and therefore the strain energy due to bending is
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The strain energy due to shear (per unit volume and per unit beam’s width) can be found as (see, e.g., [39]):
31+v
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where V is Poisson’s ratio of the material, and 7, is the shearing stress acting in the cross-sections of the

beam and associated with the distortion of the beam’s form. Assuming that this stress is distributed over
the beam’s cross-section in a parabolic fashion

x2
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we obtain the strain energy per unit beam length (height) by integrating this relationship over the beam’s
thickness:
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In the formulas (8) and (9), 7. is the maximum shearing stress at the origin (x = 0). From the obvious

max

relationship
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we have:
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and the formula (9) yields:
275
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For the entire beam the strain energy (per unit beam width) due to shear is
6
V. = 288(1+ )EAZ(}IJ (13)

Equating the total strain energy
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to the work W = 5 NA of the external lateral force N , we obtain the following formula for this force:
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Comparing this formula with the second formula in (5), we conclude that the lateral force N in the

presence of shear deformations is larger by the factor of
72 Y
Z=1+?(1+V)Z (16)

than the force N, o that does not consider these deformations. This is because the force N has to overcome

not only bending, but also shear resistance of the beam in order to achieve the given offset of the beam’s
ends. The factor (16) changes from 1.0 (for very thin-and-tall beams characterized by the next-to-zero
thickness-to-length (height) ratios), to 1.3, when this ratio is about 0.5 (for the Poisson’s ratio of 0.33).

From the relationships (11) and (15) we obtain the following formula for the maximum shearing stress
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This formula indicates particularly that the maximum shearing stress decreases rapidly with the decrease in
the ratio of the beam’s length (height) to its thickness.

The normal stress



3Nh h
o= T =

in the beam, as long as a beam model is used, is always higher than the shearing stress.
It is noteworthy that in an opposite extreme case of a joint with a very low length (height)-to-thickness ratio,

the maximum shearing stress can be sought, using the method of interfacial compliance [39], as

where the interfacial compliance in the denominator can be found as the ratio of the vertical dimension

(height) of the joint 4 to the shear modulus G of the material:
h

K=—.
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Thus, the maximum shearing stress is inversely proportional to the standoff height of the joint in the case of
a plate-like joint and becomes inversely proportional to the cube of the standoff height in the case of a
beam-like joint. The analysis of shearing and peeling stresses in an entire BGA assembly is provided in the
Appendix. We would like to point out in this connection that the recent US Patent [40] that suggests using
thicker masks will lead to larger stand-off heights of the BGA solder joints thereby resulting in lower

induced stresses and in longer lifetime of the solder joints.

NUMERICAL EXAMPLE

Let, e.g., the CTE of the package and the PCB are 12x107°1/° C and 18x107°1/° C, respectively, the
change in temperature from the reflow soldering (fabrication) temperature to the room temperature is

275°C, and the distance from the package mid-cross-section to the location of the given solder joint of the
BGA system is 12.0mm. The predicted thermally induced end offset of the solder joint is
A=(18x10"° —=12x107°)x275x12 ~ 0.02mm . Let the elastic constants of the solder material be

E =30GPa = 3060kg / mm® and v = 0.30, the height of the solder joint be /& = 0.8mm, and half its
thickness be [=0.2mm. Then the formulas (17) and (18) yield: 7, =37.lkg/mm?® and
o =148.3kg/mm’ . If the stand-off height is made & =1.6mm, then the predicted stresses are
T, =3.7Tkg/mm’and o =29.7kg/mm’ . The change is significant.

CONCLUSIONS

e Physically meaningful and easy-to-use analytical (mathematical) stress model is developed for a
short beam with clamped and offset ends. Unlike the classical Timoshenko beam theory, when the
total deflections caused by the combined bending and shear deformations are sought for the given
loading, we consider an inverse problem and seek the lateral force that caused the given total
displacement (ends offset). In a short beam, because of its deformation in shear, this force should
be larger than in a long beam, since it has to overcome both the bending and the shear resistance of
the beam to achieve the given end offset.

e The induced stresses in solder joints can be brought down considerably by employing beam-like
joints. It is imperative, of course, that if such joints are employed for lower stresses, there is still
enough interfacial real estate not to compromise the BGA bonding strength. On the other hand,
owing to a lower stress level in BGA systems with elevated standoff heights, assurance of their
strength might be much less of a challenge than in the case of conventional joints

o The maximum shearing stress is inversely proportional to the square root of the standoff height of
the joint in the case of a plate-like (small standoff height) joint and is inversely proportional to the
cube of the standoff height in the case of a beam-like (significant standoff height) joint.
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The maximum peeling stress is inversely proportional to the standoff height of the joint in the case
of a plate-like (small standoff height) joint and is next-to-zero in the case of a beam-like
(significant standoff height) joint.

By employing beam-like solder joints one might even avoid inelastic deformations in them,
thereby increasing dramatically the lifetime of the material.

Future work will include, but might not be limited to, the finite-element computations,
experimental evaluations (e.g., shear-off testing), as well as to the accounting for the effect of
inelastic deformations, if any.
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APPENDIX
Interfacial stresses in small standoff-height assemblies

The analysis that follows is carried out under an assumption that the stresses in and the performance of a
long enough BGA can be evaluated by replacing, when carrying out predictive stress modeling, an actual
BGA with a continuous layer of solder of the same standoff height as the actual BGA is. The interfacial
longitudinal displacement can be sought, in an approximate analysis, using the interfacial compliance
concept [39], in the form:

n (x)=—alAtxHJN(f)df—Klf(x)—%wl'(x),



u,(x) =—a,Atx + 4, jN (&)dé +x,7(x) + %— wy(x). (A-1)

Here;and &, (&, < «,) are the effective coefficients of thermal extension (contraction) of the package

and the PCB materials, Af is the change in temperature from the fabrication temperature to the low (room or

1 - Vl 1 - V2 o .
are the axial compliances of the PCB and the package

. and A, =
1h 2

materials, respectively, E,,v,and E,,v, are the elastic constants of the materials, 4, and A, are the

thicknesses of the PCB and the package,

testing) temperature, A, =

x

N(x) = [2(&)d¢ (Aa-2)
-L
is the thermally induced force acting ion the cross-sections of the package and the PCB, L is half assembly

length, 7(x)is the so far unknown interfacial shearing stress, k; = ——and k, = — are the effective

3G, 3G,

E
— —and G, =—2—are
2(1+v) 2(1+v,)
the effective shear moduli of the PCB and the package materials, and W, (x)and w, (x) are the deflection

functions of the PCB and the package. The origin of the coordinate x is in the mid-cross-section of the
assembly. The condition of the displacement compatibility can be written as

u,(x)—u,(x) =x,7(x), (A-3)

longitudinal interfacial compliances of the PCB and the package, G, =

h
where K, = E is the longitudinal interfacial compliance of the BGA (attachment) [39]. Substituting the
equations (A-1) into this condition we obtain:
2

where K =K, +k; +K, is the total longitudinal interfacial compliance of the assembly, and

kt(x)— (4, + 4, )j' N(&)dE + M w (x) +£22- w, (x) = AaAtx, (A-4)

Aa = a, —a, is the CTE difference between the PCB and the package.
Differentiating the equation (A-4) with respect to the coordinate x we have:

h h
kr'(x) — (A, + A,)N(x)+ ?1 wi(x)+ ?2 W, (x) = AaAt (A-5)
Since no concentrated longitudinal external forces act at the assembly ends, the boundary condition
N(ZL) = Oshould be fulfilled, and since no concentrated bending moments act at the assembly ends, the
conditions w;(£L) =0 and wj(£L) =0 for the curvatures should be fulfilled. Then the equation (A-5)

results in the following condition for the shearing stress function 7(x) :

r(iL)=iAaAt

(A-6)

Treating the PCB and the package as rectangular plates, we have the following equation of their bending
(equilibrium):

Dw{(x) =—%N(x)— [ [p(&)agas, Dwi(x) =—”2—2N(x>+ [[p&acae . an

-L-L -L-L
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p(x) is the peeling stress. The PCB and the package curvatures are therefore

2};‘31 N(x)—Dil [Jp©azis. ww=- "2 Nx)-— [ [ p&)dcag, @)

2D2 DZ -L-L

Here D, = are flexural rigidities of the PCB and the package, and

wi(x) = -

Note that since the force N(x) and the moment II p(&)dEdE, are zero at the assembly ends, the
-L-L

curvatures (A-8) are zero as well.

Introducing the formulas (A-8) into the equation (A-5) we obtain the following equation for the interfacial

shearing stress function 7(x):

Kt (x) = AN(x) + | [ p(£)dEdE, = Aaht . (A-9)
-LI-L
Here
2 2
PR L WL (A-10)
4D, 4D,

is the axial compliance of the assembly with consideration of its finite flexural rigidity (with consideration
of bending), and
h h
=—1 -2 (A-11)
2D, 2D,

is the parameter that considers the difference in the flexural rigidities of the PCB and the package. The
formula (A-10) indicates that finite flexural rigidities of the PCB and the package result in higher axial
compliance of the assembly and, hence, in higher values of the parameter of the interfacial shearing stress
(see formula (A-14) below). In an approximate analysis, aimed at the assessment of the role of the BGA
compliance, the parameter i can be put equal to zero, so that the shearing and the peeling stresses are not

coupled. Then the shearing stress can be evaluated from the simplified equation:

xt'(x)— AN (x) = AaAt (A-12)
Considering (A-2), this equation results in the following equation for the induced force N(x):
AaAt
N"(x)-k*N(x)=——, (A-13)
K
where
A
k=.— (A-14)
K

is the parameter of the interfacial shearing stress.
We seek the solution to the equation (A-13) in the form:

N(x)=C,+C, coshkx . (A-15)

G

coshkL

Since the condition N(£L) =0 has to be fulfilled, the solution (A-15) yields: C, = — , and can

cosh kx
be written as N(x) = C,| ] —————|. Introducing this formula into the equation (A-13), we obtain:
cosh kL
AaAt . . . .
Co = —T . Thus, the solution (A-15) results in the following expression for the lateral force:



A h
N(x)=- alt 1 Sos kx ] (A-16)
A cosh kL
The interfacial shearing stress can be found, as follows from the formula (A-2), by differentiation:
AaAt sinh kx
(x)=N'(x)=k — A-17
) ) A coshiL bt

This solution meets the boundary condition (A-6).
For a long assembly (in the longitudinal direction), when kL > 2.5, the solution (A-17) can be written as

e AC;At o Hm - g H) (A-18)
where
AaAt  AaAt
Toax = k——= (A-19)

A JAK

is the maximum value of the interfacial shearing stress. It takes place at the assembly ends and decreases
exponentially with the increase in the distance of the given cross-section from the assembly ends.
Assuming that the PCB and the package are very rigid compared to the BGA system, so that the interfacial

compliance of this system can be found as K = K, = E , we obtain the formula (A-19) in the following

approximate form:

G
T = AQAL [— . (A-20)
Ah
Thus, the maximum interfacial shearing stress in a long enough assembly is assembly length independent
and is inversely proportional to the square root of the BGA stand-off height.

For a short assembly (in the longitudinal direction), when kL < 0.25, the solution (A-17) yields

AaAt x
7(x) = X=T,, I (A-21)
where the maximum value
AaAt
e TL (A-22)

of the interfacial shearing stress takes place at the assembly ends. The interfacial shearing stress is linearly
distributed along the assembly. Assuming that the PCB and the package are very rigid compared to the BGA

system, so that the interfacial compliance of this system can be found as kK = K, = E , we obtain the

formula (A-22) in the following approximate form:

AaAt
Gren GTL (A-23)
Thus, the maximum interfacial shearing stress in a short enough assembly increases with an increase in the
assembly length and is inversely proportional to the BGA stand-off height.

As to the interfacial peeling stress, it can be sought, in an approximate analysis, as
p(x) = Kw, (x) = w, (%)] (A-24)

Here K is the spring constant of the BGA in the through-thickness direction. The relationship (A-24)
reflects an assumption that the deflections of the PCB and the package have to be different in the given
cross-section of the assembly to result in a non-zero peeling stress. By differentiation we find:

P'(x)=K[w(x)-w;(x)],  p"(x) =K[W(x)-w;(x)] (A-25)
Since there are no concentrated bending moments, nor concentrated lateral forced at the assembly ends, the
right parts of these equations should be zero at the ends, and therefore the following boundary conditions
should be fulfilled for the sought peeling stress:
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p"(xL)=0, p"(xL)=0. (A-26)
Introducing the formulas (A-8) into the first formula in (A-25) and differentiating the obtain expression
twice with respect to the coordinate x, we obtain the following equation for the peeling stress function

p(x):
AaAt coshkix
x coshkL’

D +D
=4/ K1 =2 A-28
p \" 4D,D (A-28)

is the parameter of the peeling stress. Considering (A-28), the equation (A-27) can be written as follows:

p" (x)+4p*p(x) =—1K (A27)

where

cosh kx
P’ () +4B p(x)=—4p"p,———, (A-29)
coshkL
where the notation
_ AaAt DD, (A30)
AOhsle xk D +D,

is used. It is noteworthy that the equation (A-27) has the form of an equation of bending of beams supported
by an elastic foundation.

We seek the solution to the equation (A-29) in the form:
4
n° coshkx
x)=CV,(Bx)+CV,(fx)—py————. A-31
p(x) = C¥, (Bx) + C,V, (fx) POt 7* coshiL (A-31)
Here

(A-32)

is the ratio of the parameters of the peeling and the shearing stresses. The first two terms in the right part of
the solution (A-31) represent the general solution to the homogeneous equation that corresponds to the
equation (A-29) and the last term is the particular solution to the inhomogeneous equation (A-29). The

functions V, (fx), i =0,1,2,3, are as follows:
V,(fx) =cosh fxcos fix, V,(fx)=sinh fxsin fx,
Vi5(fx) = 71_5 (cosh Bxsin fx + sinh fx cos fx), (A-33)
and obey the following rules of differentiation:
Vs (Bx) == B2V, (Bx), V/(Bx) = B2V, (Bx),
V3 (Bx) = BN2V, (%), Vi(Bx) = BNV, (Bx). (A-34)

Using the boundary conditions (A-26) we obtain the following equations for the constants Co and C, of

integration
2

V,w)C, —V,)C, = —1_’:7 Do

V.(u)C, +V,(u)C, = -# , tanh kL, (A-35)

where # = BL. The equations (A-35) yield:
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nV,(u)+V,(u)tanh kL
sinh 2u + sin 2u

C,=-2v2 1
0 1+774 Dy

(A-36)
-V, (u)+V,(u)tanh kL
C, =-22 n nv 2
? 1+7* = sinh 2u + sin 2u
and the solution (A-31) leads to the following expression for the peeling stress:
V.(1)+V,(u)tanhkL —nV,(u)+V,(u) tanhkL
) =-24/2 n Uif 0 v n 1 2 Vv a
) 147 P °[ smzatsinze PN nhoursinn 2D
7 7 coshkx (A-30)
1+7* " coshkL
For a long assembly (kL > 2.5) this solution yields:
4
p(x)= 1 L4 pee P [n(sin(ﬂ(L —x)—cos(B(L —x))++2 cos(B(L —x)] —77—4 ppe
41+n 1+7 (A-31)
Attheend x = L:
1 n 3
Ly=—— —n+2+4n°). A-32
p(L) 4p01+774(77 77) (A-32)

For large ratios 17 = of the parameter of the peeling stress to the parameter of the shearing stress this

formula leads to the following simple result: p(L)=— D, - This result explains the physical meaning of the
D, value: it is the peeling stress at the end of a long and stiff assembly. The formula (A-30) indicates that

this stress is inversely proportional to the interfacial compliance K and, hence, to the standoff height / of
the BGA attachment. Thus, for long and stiff assemblies, the peeling stress is even more sensitive to the
increase in the BGA standoff height than the interfacial shearing stress. The peeling stress is next to zero for

short (kL < 0.25) BGA attachments.
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